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Element-free Galerkin method (EFGM) is applied to the computation of EIT forward problem. It’s hopeful to overcome the defect 

of finite element method (FEM) for modeling tiny volume objects, such as hematomas within the organ. In this paper, the basic 
principle and implementation of EFGM are studied with simulation tests and obtained results. 
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I. INTRODUCTION 
HE hematomas are very harmful to human body, and 
delayed diagnosis can cause tragic cases like disability and 

mortality [1]. The early detection of hematomas becomes 
necessary and inevitable. However, the hematomas in early 
stage always have tiny volumes and the distributions of the 
area are sometimes flat and narrow, which make it difficult to 
detect by existing conventional medical imaging system. With 
the advantages of non-invasive, sensitive and cheap, electrical 
impedance tomography (EIT) technology may be a good 
choice to detect the high resistivity of hematomas.  

In this paper, element-free method (EFM) is applied to 
compute EIT forward problem [2]. EFM is also called 
meshless method. As a special case of weighted residual 
method, EFM only needs node information rather than 
element information. It’s hopeful to overcome the defect of 
traditional finite element method (FEM) in modeling the 
hematomas with tiny volumes. Among many forms of EFM, 
element-free Galerkin method (EFGM) [3]-[4] is widely used. 
EFGM can reduce the error caused by the local approximation 
of field function in FEM. The simulation results show the 
good performance of EFGM. 

II.  METHOD 
In EFGM, background mesh is necessary to approximate 

the realistic potential distribution by moving least square 
method (MLSM) [5]. 

MLSM is an interpolation polynomial, the field function is 
set as u(x), and 
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where, )(xp j
 is the basis function related to spatial dimension 

and superposition times, )(xa j
 is the unknown coefficient 

matrix. Generally, the estimation points and the data points are 
not exactly the same, as shown in Fig.1, where iû  is the field 
function at the point ix , and iu  is the computation result from 
equation (1).  
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Fig. 1. The difference between iû  and iu . 

Put )(xa j
 into )(xu h , and we can get 
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where, )(xwi  is the weighted function, and the distance is the 
only variable in it. Restrict the basis nodes related to an 
interpolation node in a circle surrounding with the center of 
the interpolation node, which is called support domain. 

In EFGM, the chosen weighted function needs to be non-
zero in the influence domain of the node, but be zero out of 
the influence domain. This is called the local properly of the 
shape function. The continuity of the weighted function 
determines the continuity of the shape function, and 
determines the smoothness of the filed function [6]. The 
selection of different weighted functions will affect the 
accuracy of calculation and convergence of the workload. 
Some typical weighted functions are shown in Fig.2. 

In addition, the spline weighted function is a continuous 
and differentiable function in the strict sense. It’s necessary to 
select the reasonable parameters to guarantee the function 
approximation. For the sake of simplicity, we select the quartic 
spline with the advantages of smoothness, strict sense of the 
guide function with 2C continuity, and simple implementation 
in sectional form. 
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Fig. 2. Typical weighted functions. 

The quartic spline function is shown as follows 
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where, mii rrs = , ii xxr −= , and mir  is the radius of 
influence. 

The integral equilibrium equation is formed by the Gauss 
integral equation for high algebraic accuracy.  

In EFGM, the whole space is divided into a background 
grid which is independent with the nodes. The background is 
only for integral computation, and has nothing on the building 
of the approximate function. The Gauss integration nodes are 
created in each grid, and only the Gauss nodes in the 
calculation domain are needed to be considered. 

III. SIMULATION AND RESULTS 
The 2D normalized circle domain is used to simulate the 

internal hematomas in the organs. There are 16 electrodes at 
the edge of the circle. In Fig. 3, we suppose the normal tissue 
as blue dots and the hematoma organization as red asterisks, 
which represent an electrical impedance abnormal domain, 
such as lesion, at the lower right side of the circle. 

Based on the forward computation results by EFGM, the 
EIT image is reconstructed by node back projection algorithm 
(NBPA) [7]. Fig. 4 illustrates that the position of the 
hematoma silhouette is at the lower right side of the whole 
circle domain obviously. 

IV. CONCLUSION 
In EFGM, element subdivision is not needed. For MLSM, 

the curve fitting is ever smoother, and the Gauss integral has 
higher precision. From the simulation result we can see that 
EFGM has the ability to compute EIT forward problem 
accurately, especially for tiny object, and the reconstruction 
result has the proper and accurate location. 

 
 

 
Fig. 3. Simulation circle domain for EFGM. 

 
Fig. 4. EIT image reconstructed based on EFGM. 
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